Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$6(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#33124 A - L3" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min) w/ (3) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 1/2"x3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4^{*} B^{*} b^{\prime}}{\Phi_{L R F D} p^{*} F_{u}}}=0.543 \text { in } \quad \text { (Eq. 9-30a) }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=8.03 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{array}{cc}
Q=0.632 & a^{\prime}<, Q=1 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.847 & a^{\prime}>1, Q=\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)=1.481 \\
\text { (Eq. 9-33) } & \text { (Eq. 34) }
\end{array}
$$

Width of hole along length of plate:

$$
d^{\prime}=0.625 \text { in }
$$

Distance from bolt centerline to edge of plate: $a=1.50$ in
Additional variables for prying calculation:

$$
\begin{array}{lrl}
\delta=1-\frac{d^{\prime}}{p}=0.75 & a^{\prime}=a+\frac{d_{b}}{2}=1.75 \text { in } & \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.81 \text { in } \\
\text { Eq. (9-24) } & \text { Eq. (9-27) } \\
\rho=\frac{b^{\prime}}{a^{\prime}}= & 0.57 & \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=0.00 \text { in } \\
\text { Eq. }(9-26) & \text { Eq. (9-25) } \\
\alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]=0.00
\end{array}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength.

$$
t_{\min }=\sqrt{\frac{4^{*} T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.50 \mathrm{in} \text { LRFD } \quad \text { (Eq. 9-23a) }
$$

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.500 \mathrm{in}$		
Yield Strength:	$F_{y}=36 \mathrm{ksi}$		(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$		
Gross Area:	$A_{g}=(3.0 \mathrm{in})^{*}(0.5 \mathrm{in})=1.50 \mathrm{in} 2$		
	$\phi_{t-y}=0.9$	LRFD	(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=48.60 \mathrm{kip}$		(Eqn D2-1)
Shear Lag Factor:	$U=1.0$		(Table D3.1)
Net Area:	$A_{n}=(3.0 \mathrm{in})^{*}(0.5 \mathrm{in})-\left(3^{*} 0.3125 \mathrm{in}\right)^{*}(0.5 \mathrm{in})=1.03 \mathrm{in} 2$		(Sec B4.3)
Effective Net Area:	$A_{e}=\quad A_{n}{ }^{*} U=$	1.03 in 2	(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD	(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=44.86 \mathrm{kip}$		(Eqn D2-2)

$T_{\text {allow-bracket }}=\quad \min \left(T_{\text {allow-yielding }}, T_{\text {allow-rupture }}\right)=44.86$ kip LRFD \quad| |
| :--- |
| Horizontal |

Shear on Bracket Vertical Leg:

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{4 * 0.5^{2}}{4}=$	0.2500 in3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} \mathrm{Z}=8.100 \mathrm{kip-in}$		
Moment Arm:	Moment ${ }_{\text {arm }}=1.250 \mathrm{in}$		(Eqn F11-1)
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	6.480 kip LRFD	

Bending Moment on Lower Leg (Side B):

Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{4^{*} 0.5^{2}}{4}=0.2500 \mathrm{in3}$

$$
\begin{gathered}
\phi_{b}=0.9 \quad \text { (Sec F1) } \\
M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=8.100 \mathrm{kip-in} \quad \text { (Eqn F11-1) }
\end{gathered}
$$

Moment Arm: \quad Moment $_{\text {arm }}=1.250$ in

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=6.480 \mathrm{kip} \text { LRFD (Horizontal Component) }
$$

Date: 5/7/2019
Job No.: 18-001
Structural Engineers

Piece \#33124 A -L3" x $3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)
w/ (3) 0.3125 " dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) 0.5625 " dia Hole for Hilti KB-TZ 1/2"x3-3/4"

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	
0.048-0.048	603 lbf	0.048	210 lbf	1809 lbf	630 lbf
0.048-0.075	1001 lbf	0.06	331 lbf	3003 lbf	993 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	2499 Ibf	1227 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	3174 Ibf	1644 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	3063 lbf	2691 Ibf
		3/16"	1439 lbf		4317 Ibf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:

Bracket Thickness
$t h_{\text {bracket }}=0.500 \mathrm{in}$

Nominal Shear Strength, Threads
Excluded:
Bolt Diameter:

Bolt Area:

Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:

Clear distance between edge of hole
and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity

$$
\text { Bolt }_{\text {brg }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=43.50 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 32.63 \mathrm{kip}
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$1(4)$	

Piece \#33124 A - L3" x 3" $\times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min) w/(3) $0.3125^{\prime \prime}$ dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $1 / 2$ "x3-3/4"

See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=370 \mathrm{lbf}
$$

$$
\phi V_{n}=500 \mathrm{lbf}
$$

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1000 \mathrm{lbf} \\
& \phi V_{n}=1322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#33124 A - L3" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)

 w/ (3) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $1 / 2$ "x3-3/4"| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=370 \mathrm{lbf}$ |
| ---: | :--- |
| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=500 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=1000 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=1322 \mathrm{lbf}$ |

Tension
Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$2(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#33126A - L3" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $1 / 2^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

AISC 14 Edition Part 9, p.9-10 of Specification

$$
\begin{equation*}
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.543 \mathrm{in} \tag{Eq.9-30a}
\end{equation*}
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=5.08 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{array}{rlrl}
Q=0.847 & a^{\prime}<, Q & =1 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.847 & a^{\prime}>1, Q & =\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)=1.481 \\
& (\text { Eq. 9-33) } & & \text { (Eq. 34) }
\end{array}
$$

Width of hole along length of plate:

$$
d^{\prime}=0.625 \text { in }
$$

Distance from bolt centerline to edge of plate: $\quad a=1.50$ in
Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.75 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.75 \text { in } \quad \leq\left(1.25 * b * \frac{d_{b}}{2}\right)=1.81 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.57 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.02 \text { in } \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.30 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NEL,SCAN	LRFD	1/2" BRACKETS	Date:	1/23/2020
\& ASSOCIATES			Job	18-00
Structural Engineers			Sheet:	2 (2)

Piece \#33126A - L3" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime} \mathbf{0}^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $1 / 2^{\prime \prime} \times 3-3 / 4 "$

Tension on Bracket Vertical Leq:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.500 \mathrm{in}$				
Yield Strength:	$F_{y}=36 \mathrm{ksi}$				(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$				
Gross Area:	$A_{g}=(6.0 \mathrm{in})^{*}(0.5 \mathrm{in})=3.00 \mathrm{in} 2$				
	$\phi_{t-y}=0.9$		LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=97.20 \mathrm{kip}$				(Eqn D2-1)
Shear Lag Factor:	$U=1.0$				(Table D3.1)
Net Area:	$A_{n}=(6.0 \mathrm{in})^{*}(0.5 \mathrm{in})-\left(5^{*} 0.3125 \mathrm{in}\right)^{*}(0.5 \mathrm{in})=2.22 \mathrm{in} 2$				(Sec B4.3)
Effective Net Area:	$A_{e}=\quad A_{n}{ }^{*} U=\quad 2.22 \mathrm{in} 2$				(Eqn D3-1)
	$\phi_{t r}=0.75$		LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r} *_{u}{ }^{*} A_{e}=96.52 \mathrm{kip}$				(Eqn D2-2)
	$T_{\text {allow-bracket }}=$	$\min \left(\mathrm{T}_{\text {allow }}\right.$	ing, $\left.T_{\text {allow-rupture }}\right)=$	96.52 kip LRFD	(Vertical \& Horizontal Component))

Shear on Bracket Vertical Leg:

Gross Area:	$A_{\text {gv }}=(6.0 \mathrm{in})^{*}(0.5 \mathrm{in})=3.00 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60 * F_{y}{ }^{*} A_{\text {gv }}=64.80 \mathrm{kip}$			(Eqn J4-3)
	$\Phi_{r v}=0.75$	LRFD		(Eqn J4-4)
Net Area:	$A_{n v}=(6.0 i n)$	*0.3125in)* $(0.5 \mathrm{in})=$	2.22 in2	(Sec B4.3)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{r v}{ }^{*} 0.60{ }^{*} F_{u}{ }^{*} A_{n v}=77.21 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=64.80 \mathrm{kip}$ LRFD			(Horizontal Component)

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{6^{*} 0.5^{2}}{4}=0.3750 \mathrm{in3}$

$$
\phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) }
$$

$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=12.150 \mathrm{kip}$-in
Moment Arm: \quad Moment $_{\text {arm }}=1.250$ in \quad (Eqn F11-1)

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=9.720 \mathrm{kip} \text { LRFD } \quad \text { (Vertical Component) }
$$

Bending Moment on Lower Leg (Side B):

Plastic Modulus:

$$
\begin{aligned}
& Z=\frac{b d^{2}}{4}=\frac{6 * 0.5^{2}}{4}=0.3750 \mathrm{in3} \\
& \phi_{b}=0.9 \quad \text { LRFD } \\
& M_{\text {allow }}=\phi^{*} F_{y} * Z=12.150 \mathrm{kip-in} \quad \text { (Sec F1) } \\
& \text { (Eqn F11-1) }
\end{aligned}
$$

| Moment Arm: | Moment $_{\text {arm }}$ | $=1.250$ in |
| ---: | :--- | ---: | :--- |
| Allowable Load: | $P_{\text {allow }}$ | $=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=9.720$ kip LRFD \quad (Horizontal Component) |

Job No.:	18-001
Sheet:	$2(3)$

Piece \#33126A - L3" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 1/2" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:

Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$) Capacity of (1) Screw from 1/4", $3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet).
Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck
Bolt type: \quad A307 Gr. A (Common Bolts), bearing type connection
Nominal Tensile Strength:
Bracket Thickness:
Nominal Shear Strength, Threads
Bolt Diameter: Excluded:
Bolt Area:
Resistance factor for bolt tension or shear:

$$
\begin{aligned}
F_{t} & =45 \mathrm{ksi} \\
t h_{\text {bracket }} & =0.500 \mathrm{in} \\
F_{v} & =27 \mathrm{ksi} \\
d_{b c d} & =0.50 \text { in (Table J3.2 AISC 14th) } \\
A_{b c d} & =0.25^{*} \pi^{*} d_{b c d}^{2}=0.20 \mathrm{in2} \\
\Omega \phi & =0.75 \\
V_{\text {allow-bolt }} & =\phi^{*} F_{v}^{*} A_{b c d}=3.98 \mathrm{kip} \\
T_{\text {allow-bolt }} & =\phi^{*} F_{t}^{*} A_{b c d}=6.63 \mathrm{kip}
\end{aligned}
$$

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

$$
F_{u}=58 \mathrm{ksi}
$$

Bolt edge distance:
edge-dist $=1.00$ in
$b h=0.563 \mathrm{in}$
Bolt hole diameter:

Clear distance between edge of hole

$$
L_{c}=\text { edge-dist }-0.5^{*} b h=0.72 \mathrm{in2}
$$

and edge of adjacent hole or edge of plate.
Single end bolt bearing capacity: Boltbr'g=min[(1.5*Lc*thplate*Fu),(3.0*dbcd*thplate*Fu)]=31.27 kip

$$
2 * \text { Bolt }_{\text {allow-bolt }}=2 * *^{*} \text { Bolt } t_{\text {bearing }} \quad 46.90 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$2(4)$

Piece \#33126A-L3" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6$ " Steel Angle Bracket (A36 min)

 w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $1 / 2^{\prime \prime} \times 3-3 / 4^{\prime \prime}$See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=670 \mathrm{lbf}
$$

$\phi V_{n}=1100 \mathrm{lbf}$
1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1275 \mathrm{lbf} \\
& \phi V_{n}=2552 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern. Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing
LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only. LRFD

Overall Capacity of Seismic Load - Piece \#33126A - L3" x $3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)

 w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $1 / 2^{\prime \prime} \times 3-3 / 4^{\prime \prime}$| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=670 \mathrm{lbf}$ |
| ---: | :--- |
| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=1100 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=1275 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=2552 \mathrm{lbf}$ |

Tension

Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$8(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#63124A-L6" x 3" $\times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min) w/(3) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3$ 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
\begin{equation*}
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.543 \mathrm{in} \tag{Eq.9-30a}
\end{equation*}
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=6.80 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.847 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=1.481 \\
\quad(\text { Eq. 9-33 })
\end{gathered}
$$

$$
a^{\prime}>1, Q=\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)=1.481
$$

(Eq. 34)

Width of hole along length of plate:

$$
d^{\prime}=0.625 \text { in }
$$

Distance from bolt centerline to edge of plate: $\quad a=1.50$ in
Additional variables for prying calculation:

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.38 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.75 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.75 \text { in } \quad \leq\left(1.25 * b * \frac{d_{b}}{2}\right)=1.81 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.57 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=0.32 \text { in } \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 0.62
\end{aligned}
$$

AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.500 \mathrm{in}$			
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(4.0 i n) *(0.5 i n)=2.00 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=64.80 \mathrm{kip}$			(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(4.0 \text { in })^{*}(0.5 \mathrm{in})-\left(3^{*} 0.3125 \mathrm{in}\right)^{\star}(0.5 \mathrm{in})=1.53 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	$A_{e}=\quad A_{n} * U=$	1.53 in2		(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}$	66.61 kip		(Eqn D2-2)

$T_{\text {allow-bracket }}=\min \left(T_{\text {allow-yielding }}, T_{\text {allow-rupture }}\right)=64.80$ kip LRFD \quad| |
| ---: |
| Horizontal |

Shear on Bracket Vertical Leg:

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{4 * 0.5^{2}}{4}=$	0.5000 in 3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=16.200$ kip-in		
Moment Arm:	Moment ${ }_{\text {arm }}=4.750 \mathrm{in}$		(Eqn F11-1)
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	3.411 kip LRFD	

Bending Moment on Lower Leg(Side B):

$$
\begin{aligned}
& \text { Plastic Modulus: } \quad \begin{aligned}
Z= & \frac{b d^{2}}{4}=\frac{6^{*} 0.5^{2}}{4}=0.3750 \mathrm{in3} \\
\phi_{b}=0.9 & \text { LRFD } \\
M_{\text {allow }}=\phi^{*} F_{y} * Z=12.150 \mathrm{kip}-\mathrm{in} & \text { (Sec F1) }
\end{aligned} \text { (Eqn F11-1) }
\end{aligned}
$$

Moment Arm: \quad Moment ${ }_{\text {arm }}=1250$ in

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=9.720 \text { kip LRFD (Horizontal Component) }
$$

Date: $\quad 5 / 7 / 2019$
1/2" BRACKETS

Job No.:	$18-001$
Sheet:	$3(3)$

Piece \#63124A-L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)
w/ (3) $0.3125 "$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"
Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	$N=3$
0.048-0.048	603 lbf	0.048	210 lbf	1809 Ibf	630 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	3003 Ibf	993 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	2499 Ibf	1227 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	3174 Ibf	1644 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	3063 lbf	2691 Ibf
		3/16"	1439 Ibf		4317 lbf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:
Bracket Thickness.
$t h_{\text {bracket }}=0.500$ in
Nominal Shear Strength, Threads
Excluded:
Bolt Diameter:

Bolt Area:
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:
Clear distance between edge of hole and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=43.50 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 32.63 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$3(4)$	

Piece \#63124A - L6" x 3" $\times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)

 w/(3) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=370 \mathrm{lbf}
$$

$$
\phi V_{n}=500 \mathrm{lbf}
$$

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1000 \mathrm{lbf} \\
& \phi V_{n}=1322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern. Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#63124A - L6" x $\mathbf{3 "}^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4^{\prime \prime}$ Steel Angle Bracket (A36 min)

 w/ (3) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"Load allowable-total-on-concrete-ove-metal-deck $=370 \mathrm{lbf}$
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=500 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1000 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1322 \mathrm{Ibf}$

Tension

Shear
Tension

Vertical \&
 Horizontal Allowable Load (LRFD)

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$4(1)$

Design Scope:

Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#63126A - L6" x 3" $\times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

AISC 14 Edition Part 9, p.9-10 of Specification

$$
\begin{align*}
t_{c} & =\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.543 \text { in } \\
T_{\text {avail }} & =B Q=6.80 \mathrm{kip}
\end{align*}
$$

$$
a^{\prime}<, Q=1
$$

$$
a^{\prime}>1, Q=\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)=1.481
$$

(Eq. 34)

Additional variables for prying calculation:

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.38 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.75 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.75 \text { in } \quad \leq\left(1.25 * b * \frac{d_{b}}{2}\right)=1.81 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.57 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=0.32 \text { in } \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 0.62
\end{aligned}
$$

$$
\begin{aligned}
& Q=1.481 \\
& 0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=1.240 \\
& \text { (Eq. 9-33) } \\
& \text { Width of hole along length of plate: } \\
& d^{\prime}=0.625 \text { in } \\
& \text { Distance from bolt centerline to edge of plate: } \quad a=1.50 \mathrm{in}
\end{aligned}
$$

R. F. NELLSONO	LRFD		Date:	1/23/2020
\& ASSOCIATES		1/2" BRACKETS	Job No.:	18-001
Structural Engineers			Sheet:	4 (2)

Piece \#63126A-L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4 "$

Tension on Bracket Vertical Leg;
AISC 14th - Chapter D of Specification:

Shear on Bracket Vertical Leg:

Gross Area:	$A_{\text {gv }}=(6.0 \mathrm{in})^{*}(0.5 \mathrm{in})=3.00 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60 * F_{y}{ }^{*} A_{\text {gv }}=64.80 \mathrm{kip}$			(Eqn J4-3)
	$\Phi_{N}=0.75$	LRFD		(Eqn J4-4)
Net Area:	$A_{n v}=(6.0 i n)^{*}(0.5 n)-\left(2^{*} 0.3125 i n\right)^{*}(0.5 \mathrm{in})=2.69 \mathrm{in} 2$			(Sec B4.3)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{r v}{ }^{*} 0.60{ }^{*} F_{u}{ }^{*} A_{n v}=93.53 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=64.80 \mathrm{kip}$ LRFD			(Horizontal Component)

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):

$$
\begin{aligned}
& \text { Plastic Modulus: } \quad \begin{aligned}
Z= & \frac{b d^{2}}{4}=\frac{6^{*} 0.5^{2}}{4}=0.3750 \mathrm{in} 3 \\
\phi_{b}=0.9 & \text { LRFD } \\
M_{\text {allow }}=\phi^{*} F_{y} * Z= & 12.150 \mathrm{kip}-\mathrm{in}
\end{aligned}
\end{aligned}
$$

$$
\phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) }
$$

Moment Arm: \quad Moment $_{\text {arm }}=4.750$ in \quad (Eqn F11-1)
Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }}=2.558 \mathrm{kip}$ LRFD \quad (Vertical Component)

Bending Moment on Lower Leg (Side B)

Plastic Modulus:

$$
\begin{aligned}
& Z=\frac{b d^{2}}{4}=\frac{6^{*} 0.5^{2}}{4}=0.3750 \mathrm{in3} \\
& \phi_{b}=0.9 \quad \text { LRFD } \\
& \quad M_{\text {allow }}=\phi^{*} F_{y}^{* Z}=12.150 \mathrm{kip}-\mathrm{in}
\end{aligned}
$$

| Moment Arm: | Moment $_{\text {arm }}$ | $=1.250$ in |
| ---: | :--- | ---: | :--- |
| Allowable Load: | $P_{\text {allow }}$ | $=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=9.720$ kip LRFD \quad (Horizontal Component) |

R. F. NELSON		Date:	5/7/2019
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$4(3)$

Piece \#63126A - L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)

w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:

Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$) Capacity of (1) Screw from $1 / 4^{\prime \prime}, 3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet) Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $N=5$ $\boldsymbol{V}_{\text {allow }}{ }^{* N}$	$\boldsymbol{T}_{\text {allow }}{ }^{*} \boldsymbol{N}$
$0.048-0.048$	603 lbf	0.048	210 lbf	3015 lbf	$\mathbf{1 0 5 0} \mathrm{lbf}$
$0.048-0.075$	1001 lbf	0.06	331 lbf	5005 lbf	1655 lbf
$0.060-0.060$	833 lbf	0.075	409 lbf	4165 lbf	2045 lbf
$0.075-0.078$	1058 lbf	0.105	548 lbf	5290 lbf	2740 lbf
$1 / 8^{\prime \prime}-3 / 16^{\prime \prime}$	1021 lbf	$1 / 8^{\prime \prime}$	897 lbf	5105 lbf	4485 lbf
		$3 / 16^{\prime \prime}$	1439 lbf		7195 lbf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength.

$$
\begin{aligned}
F_{t} & =45 \mathrm{ksi} \\
t h_{\text {bracket }} & =0.500 \mathrm{in} \\
F_{v} & =27 \mathrm{ksi}
\end{aligned}
$$

Bracket Thickness:

Nominal Shear Strength, Threads
(Table J3.2 AISC 14th)
Bolt Diameter:
$d_{b c d}=0.50 \mathrm{in}$

Bolt Area:
$A_{b c d}=0.25^{*} \pi^{*} d_{b c d}{ }^{2}=0.20 \mathrm{in} 2$
$\phi=0.75 \quad L R F D$
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:
$V_{\text {allow-bolt }}=\phi^{*} F_{V}{ }^{*} A_{b c d}=3.98 \mathrm{kip}$

Tension Capacity of single bearing type bolt:
$T_{\text {allow-bolt }}=\quad \phi^{*} F_{t}^{*} A_{b c d}=6.63 \mathrm{kip}$

Bolt bearing strength at bracket connection: (Section J3.10)

$$
F_{u}=58 \mathrm{ksi}
$$

Bolt edge distance:

$$
\begin{aligned}
\text { edge-dist } & =1.50 \mathrm{in} \\
b h & =0.563 \mathrm{in}
\end{aligned}
$$

Clear distance between edge of hole $\quad L_{c}=$ edge-dist $-0.5^{*} b h=1.22$ in2 and edge of adjacent hole or edge of plate:

Single bearing capacity: Boltbr'g=min[(1.5*Lc*thplate*Fu),(3.0*dbcd*thplate*Fu)]=43.50 kip

$$
2^{*} \text { Bolt allow-bolt }=3 * \phi^{*} \text { Bolt }_{\text {bearing }} \quad 65.25 \mathrm{kip} \text { LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$9(4)$	

Piece \#63126A-L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6$ " Steel Angle Bracket (A36 min)

 w/(5) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=670 \mathrm{lbf}
$$

$\phi V_{n}=1100 \mathrm{lbf}$
1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1275 \mathrm{lbf} \\
& \phi V_{n}=2552 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern. Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#63126A - L6" $\times 3^{\prime \prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)

 w/ (5) $0.3125^{\prime \prime}$ dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=670 \mathrm{lbf}$ |
| ---: | :--- |
| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=1100 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=1275 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=2552 \mathrm{lbf}$ |

Tension

Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$5(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., $1 / 2$ Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#63128A - L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} p^{*} F_{u}}}=0.543 \text { in } \quad \text { (Eq. 9-30a) }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=11.89 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{array}{cc}
Q=1.240 & a^{\prime}<, Q=1 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=1.240 & a^{\prime}>1, Q=\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)=1.481 \\
\text { (Eq. 9-33) } &
\end{array}
$$

Width of hole along length of plate:

$$
d^{\prime}=0.625 \mathrm{in}
$$

Distance from bolt centerline to edge of plate: $a=1.50$ in
Additional variables for prying calculation:

$$
\begin{array}{lrl}
\delta=1-\frac{d^{\prime}}{p}= & a^{\prime}=a+\frac{d_{b}}{2}= & 1.75 \text { in } \\
\text { Eq. (9-24) } & \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.81 \text { in } \\
\rho=\frac{b^{\prime}}{a^{\prime}}=0.57 & \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=-0.57 \text { in } \\
\text { Eq. (9-26) } & \text { Eq. (9-25) } \\
\alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= & -0.48
\end{array}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4^{*} T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u}^{*}\left(1+\delta^{*} \alpha^{\prime}\right)}}=
$$

0.76 in $\operatorname{LRFD} \quad$ (Eq. 9-23a)

R. F. NELSON5	LRFD	(Eqn J4-4)	Date:	1/23/2020
\& ASSOCIATES		1/2" BRACKETS	Job No.:	18-001
Structural Engineers			Sheet:	5 (2)

Piece \#63128A-L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{-} 8^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/(10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

Tension on Bracket Vertical Leg;
AISC 14th - Chapter D of Specification:

Shear on Bracket Vertical Leg:

Gross Area:	$A_{\text {gv }}=(8.0 \mathrm{in})^{*}(0.5 \mathrm{in})=4.00 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60 * F_{y}{ }^{*} A_{\text {gv }}=86.40 \mathrm{kip}$			(Eqn J4-3)
	$\Phi_{N}=0.75$	LRFD		(Eqn J4-4)
Net Area:	$A_{n v}=(8.0 \mathrm{in})^{*}(0.5 \mathrm{in})-\left(5^{*} 0.3125 \mathrm{in}\right)^{*}(0.5 \mathrm{in})=3.22 \mathrm{in} 2$			(Sec B4.3)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{v}{ }^{*} 0.60{ }^{*} F_{u}{ }^{*} A_{n v}=112.01 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=86.40 \mathrm{kip}$ LRFD			(Horizontal Component)

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{8 * 0.5^{2}}{4}=0.5000 \mathrm{in3}$

$$
\phi_{b}=0.9 \quad \text { LRFD } \quad \text { (Sec F1) }
$$

$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=16.200 \mathrm{kip}$-in
Moment Arm: \quad Moment $_{\text {arm }}=4.250$ in \quad (Eqn F11-1)

Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }}=3.812 \mathrm{kip}$ LRFD \quad (Vertical Component)

Bending Moment on Lower Leg (Side B):

Plastic Modulus:

$$
\begin{aligned}
& Z=\frac{b d^{2}}{4}=\frac{8 * 0.5^{2}}{4}=0.5000 \mathrm{in} 3 \\
& \phi_{b}=0.9 \\
& \quad \text { LRFD } \\
& M_{\text {allow }}=\phi^{*} F_{y} * Z=16.200 \mathrm{kip-in}
\end{aligned}
$$

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=12.960 \text { kip LRFD (Horizontal Component) }
$$

R. F. NELSON	
$\&$ ASSOCIATES	$1 / 2 " B R A C K E T S$
Structural Engineers	

Date: \quad 5/7/2019
\& ASSOCIATES
Job No.: 18-001
Sheet: 5 (3)
Piece \#63128A - L6" $x 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:

Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi})$ Capacity of (1) Screw from 1/4", $3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet).
Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck
Bolt type: \quad A307 Gr. A (Common Bolts), bearing type connection
Nominal Tensile Strength

$$
F_{t}=45 \mathrm{ksi}
$$

Bracket Thickness:
$t h_{\text {bracket }}=0.500$ in
Nominal Shear Strength, Threads $F_{v}=27 \mathrm{ksi}$
Excluded:
(Table J3.2 AISC 14th)
Bolt Diameter:
$d_{b c d}=0.50 \mathrm{in}$
Bolt Area:
$A_{b c d}=0.25^{*} \pi^{*} d_{b c d}{ }^{2}=0.20 \mathrm{in2}$
Resistance factor for bolt tension or shear:
$\phi=0.75$
LRFD

Shear Capacity of single bearing type bolt:
$V_{\text {allow-bolt }}=\quad \phi^{*} F_{V}{ }^{*} A_{b c d}=3.98 \mathrm{kip}$

Tension Capacity of single bearing type bolt:
$T_{\text {allow-bolt }}=\quad \phi^{*} F_{t}{ }^{*} A_{b c d}=6.63 \mathrm{kip}$

Bolt bearing strength at bracket connection: (Section J3.10)

$$
F_{u}=58 \mathrm{ksi}
$$

Bolt edge distance:

$$
\begin{array}{r}
\text { edge-dist }=1.00 \mathrm{in} \\
b h=0.563 \mathrm{in} \\
L_{c}=\text { edge-dist }-0.5^{*} b h=0.72 \mathrm{in} 2
\end{array}
$$

Clear distance between edge of hole
and edge of adjacent hole or edge of plate.
Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} t h_{\text {plate }}{ }^{*} F_{u}\right),\left(3.0^{*} d_{\text {bcd }}{ }^{*} h_{\text {plate }}{ }^{*} F_{u}\right)\right]=31.27 \mathrm{kip}
$$

$$
3 * \text { Bolt }_{\text {allow-bolt }}=3 * \phi * \text { Bolt }_{\text {bearing }} \quad 70.35 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	1/2" BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$10(4)$	

Piece \#63128A-L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(10) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=750 \mathrm{lbf}
$$

$$
\phi V_{n}=1240 \mathrm{lbf}
$$

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1400 \mathrm{lbf} \\
& \phi V_{n}=3150 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load -Piece \#63128A-L6" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min)

 w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=750 \mathrm{lbf}$ |
| ---: | :--- |
| Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$ | $=1240 \mathrm{lbf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=1400 \mathrm{Ibf}$ |
| Load $_{\text {allowable-total-on-4" min-concrete-slab }}$ | $=3150 \mathrm{Ibf}$ |

Tension

Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Shear

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$6(1)$

Design Scope:

Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#83124A-L8" x 3" $\times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min) w/(6) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

AISC 14 Edition Part 9, p.9-10 of Specification

$$
\begin{align*}
& t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.543 \mathrm{in} \tag{Eq.9-30a}\\
& T_{\text {avail }}=B Q=9.95 \mathrm{kip} \tag{Eq.9-31}
\end{align*}
$$

$$
\begin{aligned}
Q=1.000 & a^{\prime}<, Q & =1 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.540 & a^{\prime}>1, Q & =\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)=1.481 \\
\text { (Eq. 9-33) } & & \text { (Eq. 34) }
\end{aligned}
$$

Width of hole along length of plate:

$$
d^{\prime}=0.625 \text { in }
$$

Distance from bolt centerline to edge of plate: $\quad a=1.50$ in
Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.75 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.75 \text { in } \quad \leq\left(1.25 * b * \frac{d_{b}}{2}\right)=1.81 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.57 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=\quad-0.34 \text { in } \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& -0.34
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.64 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON	Date:	$1 / 23 / 2020$	
\& ASSOCIATES	1/2" BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$6(2)$	

Prying of Piece \#83124A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\circ}-4^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(6) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

Tension on Bracket Vertical Leg;
AISC 14th - Chapter D of Specification:

Bracket Thickness: $\quad t h_{\text {bracket }}=0.500$ in					
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)	
Ulitimate Strength:	$F_{u}=58 \mathrm{ksi}$				
Gross Area:	$A_{g}=(4.0 \mathrm{in})^{*}(0.5 \mathrm{in})=2.00 \mathrm{in} 2$				
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)	
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=64.80 \mathrm{kip}$			(Eqn D2-1)	
Shear Lag Factor:	$U=1.0$			(Table D3.1)	
Net Area:	$A_{n}=(4.0 \mathrm{in})^{*}(0.5 \mathrm{in})-\left(3^{*} 0.3125 \mathrm{in}\right)^{*}(0.5 \mathrm{in})=1.53 \mathrm{in} 2$			(Sec B4.3)	
Effective Net Area:	$A_{e}=\quad A_{n} * U=\quad 1.53 \mathrm{in} 2$			(Eqn D3-1)	
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)	
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r} *_{u}{ }^{*} A_{e}=66.61 \mathrm{kip}$			(Eqn D2-2)	
	$T_{\text {allow-bracket }}=\min \left(T_{\text {allow }}\right.$	ding, $\left.T_{\text {allow-rupture }}\right)=$	64.80 kip LRFD	(Vertical \& Horizontal Component)	
Shear on Bracket Vertical Leg:					
Gross Area:		$A_{\text {gv }}=(4.0 \mathrm{in})^{*}(0.5 \mathrm{in})=2.00 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)	
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60{ }^{*} F_{y}{ }^{*} A_{g v}=43.20 \mathrm{kip}$			(Eqn J4-3)	
	$\Phi_{r v}=0.75$	LRFD		(Eqn J4-4)	
Net Area:	$A_{n v}=(4.0 i n)^{*}(0.5 i n)-\left(3^{*} 0.3125 i n\right)^{*}(0.5 i n)=1.53 \mathrm{in} 2$			(Sec B4.3)	
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{r v}{ }^{*} 0.60^{*} F_{u}{ }^{*} A_{n v}=$		53.29 kip	(Eqn J4-4)	
	$V_{\text {allow }}=\min \left(V_{\text {allow-yielding }}, V_{\text {allow-rupture }}\right)=43.20 \mathrm{kip}$			(Horizontal Component)	

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{4^{*} 0.5^{2}}{4}=0.2500 \mathrm{in3}$
$\phi_{b}=0.9 \quad L R F D \quad$ (Sec F1)
$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=8.100 \mathrm{kip}$-in

Moment Arm: \quad Moment $_{\text {arm }}=6.250$ in \quad (Eqn F11-1)
Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.296 \mathrm{kip}$ LRFD \quad (Vertical Component)
Bending Moment on Lower Leg (Side B):
Plastic Modulus: $\quad \begin{aligned} Z & =\frac{b d^{2}}{4}=\frac{4 * 0.5^{2}}{4}=0.2500 \mathrm{in} 3 \\ \phi_{b} & =0.9\end{aligned}$

$$
M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=8.100 \mathrm{kip} \text {-in }
$$

(Eqn F11-1)

Moment Arm: \quad Moment $_{\text {arm }}=1.250$ in
Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=6.480 \mathrm{kip}$ LRFD \quad (Horizontal Component)

R. F. NELSON. 75		LRFD	Date:
\& ASSOCIATES		5/7/2019	
Structural Engineers		Job No.:	18-001
		Sheet:	$6(3)$

Prying of Piece \#83124A-L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (6) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"
Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi}$ \& min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from $1 / 4^{\prime \prime}, 3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck
Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:

Bracket Thickness
$t h_{\text {bracket }}=0.500$ in

Nominal Shear Strength, Threads
Excluded:
Bolt Diameter:

Bolt Area:

Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance.
Bolt hole diameter:

Clear distance between edge of hole and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\text { Bolt br'g }=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=31.27 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 23.45 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$6(4)$	

Prying of Piece \#83124A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)

 w/(6) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=370 \mathrm{lbf} \\
& \phi V_{n}=500 \mathrm{lbf}
\end{aligned}
$$

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1000 \mathrm{lbf} \\
& \phi V_{n}=1322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern. Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load -Prying of Piece \#83124A-L8" $\times 3^{\prime \prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)

 w/(6) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"Load allowable-total-on-concrete-ove-metal-deck $=370 \mathrm{lbf}$
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=500 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1000 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1322 \mathrm{Ibf}$

Tension

Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$7(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#83126A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} p^{*} F_{u}}}=0.543 \text { in } \quad \text { (Eq. 9-30a) }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=8.03 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$Q=1.000$

$$
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.632
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.75 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.75 \mathrm{in} \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.81 \mathrm{in} \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.57 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=0.00 \text { in } \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 0.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.50 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

\boldsymbol{R}. F. NELSON		Date:	$1 / 23 / 2020$
\& ASSOCIATES	1/2" BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$7(2)$	

Piece \#83126A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (10) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4^{\prime \prime}$

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

${ }^{* \star}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{6 * 0.5^{2}}{4}=$	0.3750 in3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=12.150 \mathrm{kip-in}$		
Moment Arm:	Moment ${ }_{\text {arm }}=6.250 \mathrm{in}$		(Eqn F11-1)
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	1.944 kip LRFD	

Bending Moment on Lower Leg (Side B):

Plastic Modulus: \quad| $Z=$ | $\frac{b d^{2}}{4}=\frac{6 * 0.5^{2}}{4}=$ |
| ---: | :--- |
| ϕ_{b} | $=0.3750 \mathrm{in} 3$ |
| LRFD | |
| $M_{\text {allow }}$ | $=\phi^{*} F_{y}{ }^{*} Z=12.150 \mathrm{kip-in}$ |\quad (Sec F1)

(Eqn F11-1)

Moment Arm: \quad Moment $_{a r m}=1.250$ in

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=9.720 \text { kip LRFD } \quad \text { (Horizontal Component) }
$$

R. F. NELSON		Date:	$5 / 7 / 2019$
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$7(3)$

Piece \#83126A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:

Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$) Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:

Bracket Thickness.

Nominal Shear Strength, Threads
Excluded:
Bolt Diameter:

Bolt Area:
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:
Clear distance between edge of hole and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\begin{aligned}
F_{t} & =45 \mathrm{ksi} \\
t h_{\text {bracket }} & =0.500 \mathrm{in}
\end{aligned}
$$

$$
F_{v}=27 \mathrm{ksi}
$$

(Table J3.2 AISC 14th)

$$
d_{b c d}=0.50 \mathrm{in}
$$

$$
A_{b c d}=0.25^{*} \pi^{*} d_{b c d}^{2}=0.20 \mathrm{in} 2
$$

$$
\phi=0.75
$$

LRFD

$$
V_{\text {allow-bolt }}=\phi^{*} F_{v}^{*} A_{b c d}=3.98 \mathrm{kip}
$$

$$
T_{\text {allow-bolt }}=\quad \phi^{*} F_{t}^{*} A_{b c d}=6.63 \mathrm{kip}
$$

$$
\begin{array}{r}
F_{u}=58 \mathrm{ksi} \\
\text { edge-dist }=1.00 \mathrm{in} \\
b h=0.563 \mathrm{in} \\
L_{c}=\text { edge-dist }-0.5^{*} b h=0.72 \mathrm{in} 2
\end{array}
$$

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=31.27 \mathrm{kip}
$$

$$
2 * \text { Bolt allow-bolt }=2 * \phi^{*} \text { Bolt } t_{\text {bearing }} 46.90 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$7(4)$	

Piece \#83126A - L8" x $3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4^{\prime \prime}$

See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=670 \mathrm{lbf} \\
& \phi V_{n}=1100 \mathrm{lbf}
\end{aligned}
$$

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1275 \mathrm{lbf} \\
& \phi V_{n}=2522 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#83126A-L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$	$=670 \mathrm{lbf}$
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$	$=1100 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}$	$=1275 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}$	$=2522 \mathrm{Ibf}$

Tension

Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Shear

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$8(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/2" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#83128A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
\begin{equation*}
t_{c}=\sqrt{\frac{4^{*} B^{*} b^{\prime}}{\Phi_{L R F D} p^{*} F_{u}}}=0.543 \mathrm{in} \tag{Eq.9-30a}
\end{equation*}
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=8.03 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$Q=0.632$

$$
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.847
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

Additional variables for prying calculation:

$$
\begin{array}{lrl}
\delta=1-\frac{d^{\prime}}{p}=0.75 & a^{\prime}=a+\frac{d_{b}}{2}=1.75 \text { in } & \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.81 \text { in } \\
\text { Eq. (9-24) } & \text { Eq. (9-27) } \\
\rho=\frac{b^{\prime}}{a^{\prime}}=0.57 & \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=0.00 \text { in } \\
\text { Eq. (9-26) } & \text { Eq. (9-25) } \\
\alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]=0.00
\end{array}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4^{*} T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.50 \mathrm{in} \text { LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON		Date:
\& ASSOCIATES	1/2"2/2020	
Structural Engineers	BRACKETS	Job No.:
	Shoet:	$8(2)$

Piece \#83128A-L8" $\times 3^{\prime \prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4^{\prime \prime}$

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

${ }^{* \star}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):

$$
\begin{aligned}
& \text { Plastic Modulus: } \quad Z=\frac{b d^{2}}{4}=\frac{8^{*} 0.5^{2}}{4}=0.5000 \text { in3 } \\
& \phi_{b}=0.9 \quad L R F D \quad(\operatorname{Sec} F 1) \\
& M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=16.200 \mathrm{kip}-\mathrm{in} \\
& \text { Moment Arm: } \\
& \text { Moment }_{\text {arm }}=6.250 \mathrm{in} \\
& \text { (Eqn F11-1) } \\
& \text { Allowable Load: } \quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=2.592 \mathrm{kip} \text { LRFD } \quad \text { (Vertical Component) }
\end{aligned}
$$

Bending Moment on Lower Leg (Side B):

Plastic Modulus:	$\begin{aligned} & Z=\frac{b d^{2}}{4}=\frac{8 * 0.5^{2}}{4}= \\ & \phi_{b}=0.9 \end{aligned}$	$0.5000 \text { in3 }$ LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	$16.200 \mathrm{kip}-\mathrm{in}$	(Eqn F11-
Moment Arm:	Moment ${ }_{\text {arm }}=1.250 \mathrm{in}$		
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	12.960 kip LRFD	(Horizontal Component)

R. F. NELSON		Date:	5/7/2019
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$8(3)$

Piece \#83128A - L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, IrfD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) Irfd

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	$N=10$
0.048-0.048	603 lbf	0.048	210 lbf	6030 lbf	2100 lbf
0.048-0.075	1001 lbf	0.06	331 lbf	10010 Ibf	3310 lbf
0.060-0.060	833 lbf	0.075	409 lbf	8330 Ibf	4090 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	10580 Ibf	5480 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	10210 Ibf	8970 lbf
		3/16"	1439 lbf		14390 Ibf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: \quad A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:

Bracket Thickness
$t h_{\text {bracket }}=0.500 \mathrm{in}$

Nominal Shear Strength, Threads
Excluded:
Bolt Diameter:

Bolt Area:

Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance.
Bolt hole diameter:

Clear distance between edge of hole
and edge of adjacent hole or edge of plate:
Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{*} d_{\text {bcd }}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=31.27 \mathrm{kip}
$$

$$
3^{*} \text { Bolt }_{\text {allow-bolt }}=3 * \phi^{*} \text { Bolt }_{\text {bearing }} \quad 70.35 \mathrm{kip} \text { LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2010$	
\& ASSOCIATES	$\mathbf{1 / 2 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers	Sheet:	$8(4)$	

Piece \#83128A-L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=750 \mathrm{lbf}
$$

$\phi V_{n}=1240 \mathrm{lbf}$

1/2" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1400 \mathrm{lbf} \\
& \phi V_{n}=3150 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917, which allows the conversion of the allowable loads to ASD, requiring input which is specific to the racking system, the allowable load fore this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#83128A-L8" $\times 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (10) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.5625^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$	$=750 \mathrm{lbf}$
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}$	$=1240 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}$	$=1400 \mathrm{Ibf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}$	$=3150 \mathrm{Ibf}$

Tension

Shear

Tension

Vertical \&
Horizontal Allowable Load (LRFD)

Shear

