Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$1(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#33143A - L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3$ 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.440 \text { in }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=2.86 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

$$
d^{\prime}=0.500 \mathrm{in}
$$

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.82 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.69 \text { in } \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.70 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \mathrm{in} \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta * \alpha^{\prime}\right)}}=\quad 0.23 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON	Date:	$1 / 23 / 2020$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:
Structural Engineers	Sheet:	$18-001$

Piece \#33143A - L3" x $3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min)

w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.2500 \mathrm{in}$			
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})=0.75 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=24.30 \mathrm{kip}$			(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(2^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=0.59 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	* $U=0.59 \mathrm{in} 2$			(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=25.83 \mathrm{kip}$		24.30 kip LRFD	(Eqn D2-2)
	$T_{\text {allow-bracket }}=\min \left(\mathrm{T}_{\text {allow }}\right.$	ding,$\left.T_{\text {allow-upture }}\right)=$		(Vertical \& Horizontal Component))

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{3^{*} 0.25^{2}}{4}=0.0469 \mathrm{in} 3$

$$
\phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) }
$$

$$
M_{\text {allow }}=\phi^{*} F_{y} * Z=1.519 \mathrm{kip}-\mathrm{in}
$$

Moment Arm:

$$
\text { Moment }_{\text {arm }}=1.375 \mathrm{in}
$$

(Eqn F11-1)

Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.105 \mathrm{kip}$ LRFD \quad (Vertical Component)
Bending Moment on Lower Leg (Side B):
Plastic Modulus.

$$
\begin{aligned}
& Z=\frac{b d^{2}}{4}=\frac{3 * 0.25^{2}}{4}=0.0469 \mathrm{in3} \\
& \phi_{b}=0.9 \\
& M_{\text {allow }}=\phi^{*} F_{y} * Z=1.519 \mathrm{kip-in}
\end{aligned}
$$

Moment Arm
Moment $_{\text {arm }}=1.375 \mathrm{in}$

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.105 \mathrm{kip} \text { LRFD } \quad \text { (Horizontal Component) }
$$

R. F. NELSON				Date:	5/7/2019
\& ASSOCIATES		1/4" BRACKETS		Job No.:	18-001
Structural Engineers				Sheet:	1 (3)
Piece \#33143A-L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min)					
w/(2) $0.3125^{\prime \prime}$ dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (1) $0.4375{ }^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" ${ }^{\text {x }}$ 3-3/4"					
Screws from Angle Bracket to Steel Sheet:					
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity					
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi}$ \& min tensile strength Fu $=45 \mathrm{ksi}$)					
Capacity of (1) Screw from 1/4", $3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD					
Design Thickness (in)	$V_{\text {allow }}$	Design Thickness	$T_{\text {allow }}$	Number of Screws	
		(in)		$V_{\text {allow }}{ }^{*} N$	$T_{\text {allow }}{ }^{*} N$
0.048-0.048	603 lbf	0.048	210 lbf	1206 Ibf	420 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	2002 lbf	662 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	1666 Ibf	818 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	2116 Ibf	1096 Ibf
1/8" - 3/16"	1021 lbf	1/8"	897 lbf	2042 Ibf	1794 Ibf
		3/16"	1439 lbf		2878 Ibf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:
Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck
Bolt type: \quad A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:	$F_{t}=45 \mathrm{ksi}$		
Bracket Thickness:	$t h_{\text {bracket }}=0.25 \mathrm{in}$		
Nominal Shear Strength, Threads Excluded: Excluded:	$F_{v}=$	ksi (Table J3	AISC 14th)
Bolt Diameter:	$d_{b c d}=0.50$ in		
Bolt Area:	$A_{b c d}=$	$5^{*} \pi^{*} d_{b c d}{ }^{2}=$	0.20 in2
Resistance factor for bolt tension or shear:			LRFD
Shear Capacity of single bearing type bolt:	$V_{\text {allow-bolt }}=$	$\phi^{*} F_{v}{ }^{*} A_{b c d}=$	3.98 kip
Tension Capacity of single bearing type bolt:	$T_{\text {allow-bolt }}=$	$\phi^{*} F_{t}{ }^{*} A_{b c d}=$	6.63 kip

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:
Clear distance between edge of hole and edge of adjacent hole or edge of plate

Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th }_{\text {plate }}{ }^{*} F_{u}\right),\left(3.0^{*} d_{b c d}^{*} t h_{\text {plate }}{ }^{*} F_{u}\right)\right]=21.75 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 16.31 \mathrm{kip} \text { LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$1(4)$

Piece \#33143A - L3" x 3" x 1/4" x 0'-3" Steel Angle Bracket (A36 min)

 w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4^{\prime \prime}$See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD)
See Hilti Profis output for Allowable Combined Tension and Shear Loads for Concrete Slab (LRFD)
3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=390 \mathrm{lbf} \\
& \phi V_{n}=440 \mathrm{lbf}
\end{aligned}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=950 \mathrm{lbf} \\
& \phi V_{n}=1,322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#33143A-3" x 3" x 1/4" x 0'-3" Steel Angle Bracket (A36 min) w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3 -3/4"

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=390 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=440 \mathrm{lbf}$	Shear	 Horizontal Allowable Load - (LRFD)
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=950 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1,322 \mathrm{lbf}$	Shear	

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$2(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#33144A-L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-4^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3$ 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.440 \text { in }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=2.86 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

$$
d^{\prime}=0.500 \mathrm{in}
$$

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.82 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.69 \text { in } \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.70 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \mathrm{in} \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta * \alpha^{\prime}\right)}}=\quad 0.23 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON	Date:	$1 / 23 / 2020$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:
Structural Engineers	Sheet:	$2(2)$

Piece \#33144A - L3" x $3^{\prime \prime} \times 1 / 4 " \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)

w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg:

Plastic Modulus:

$$
\begin{gathered}
Z=\frac{b d^{2}}{4}=\frac{4 * 0.25^{2}}{4}=0.0625 \mathrm{in3} \\
\phi_{b}=0.9
\end{gathered}
$$

(Sec F1)

$$
M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=2.025 \text { kip-in }
$$

Moment Arm:

$$
\text { Moment }_{\text {arm }}=1.375 \mathrm{in}
$$

(Eqn F11-1)

$$
\text { Allowable Load: } \quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.473 \mathrm{kip} \text { LRFD } \quad \text { (Vertical Component) }
$$

Bending Moment on Lower Leg (Side B):

Plastic Modulus: \quad| $Z=\frac{b d^{2}}{4}=\frac{4 * 0.25^{2}}{4}=0.0625 \mathrm{in} 3$ | |
| ---: | :--- |
| ϕ_{b} | $=0.9$ |
| $M_{\text {allow }}=\phi^{*} F_{y} * Z=2.025 \mathrm{kip-in}$ | (Sec F1) |
| LRFD | |${ }^{\text {(Eqn F11-1) }}$

Moment Arm: \quad Moment $_{\text {arm }}=1.375$ in

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.473 \mathrm{kip} \text { LRFD } \quad \text { (Horizontal Component) }
$$

R. F. NELSON		Date:	$5 / 7 / 2019$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$2(3)$

Piece \#33144A-L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min)
w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	
0.048-0.048	603 lbf	0.048	210 lbf	1206 Ibf	420 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	2002 lbf	662 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	1666 Ibf	818 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	2116 Ibf	1096 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	2042 Ibf	1794 Ibf
		3/16"	1439 lbf		2878 lbf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:
Bracket Thickness
$t h_{\text {bracket }}=0.25 \mathrm{in}$
Nominal Shear Strength, Threads Excluded:

Bolt Diameter:

Bolt Area:
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:

Clear distance between edge of hole and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=21.75 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 16.31 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$2(4)$

Piece \#33144A-L3" x 3" x 1/4" x 0'-4" Steel Angle Bracket (A36 min)

 w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads (LRFD)

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\phi N_{n}=390 \mathrm{lbf}
$$

$$
\phi V_{n}=440 \mathrm{lbf}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=950 \mathrm{lbf} \\
& \phi V_{n}=1322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#33143A-3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-4^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"
Load allowable-total-on-concrete-ove-metal-deck $=390 \mathrm{lbf}$
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=440 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=950 \mathrm{lbf}$
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1322 \mathrm{Ibf}$

Tension

Shear

Tension
Vertical \&
Horizontal Allowable Load (LRFD)

Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1322 \mathrm{lbf}$
Shear

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$3(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#33146A - L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(4) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3$ 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.440 \text { in }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=2.86 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

Additional variables for prying calculation:

$$
\begin{array}{lrr}
\delta=1-\frac{d^{\prime}}{p}=0.82 & a^{\prime}=a+\frac{d_{b}}{2}= & 1.69 \text { in } \\
\text { Eq. (9-24) } & \text { Eq. (9-27) } & \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
\rho=\frac{b^{\prime}}{a^{\prime}}=1.70 & \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \mathrm{in} \\
\text { Eq. (9-26) } & \text { Eq. (9-25) } \\
\alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= & 1.00
\end{array}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.23 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON	Date:	$1 / 23 / 2020$
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:
Structural Engineers		Sheet:
		$3(2)$

Piece \#33146A - L3" $\times 3^{\prime \prime} \times 1^{\prime \prime} 4^{\prime \prime} \times 0^{\prime}-6$ " Steel Angle Bracket (A36 min
w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4^{\prime \prime}$

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.2500 \mathrm{in}$			
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(6.0 \mathrm{in})^{*}(0.25 \mathrm{in})=1.50 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=48.60 \mathrm{kip}$			(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(6.0 \mathrm{in})^{\star}(0.25 \mathrm{in})-\left(4^{*} 0.3125 \mathrm{in}\right)^{\star}(0.25 \mathrm{in})=1.19 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	$A_{e}=\quad A_{n}{ }^{*} U=\quad 1.19 \mathrm{in} 2$			(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=51.66 \mathrm{kip}$			(Eqn D2-2)
	$T_{\text {allow-bracket }}=\quad \min \left(T_{\text {allow }}\right.$	Iding, $\left.\mathrm{T}_{\text {allow-upture }}\right)=$	48.60 kip LRFD	(Vertical \& Horizontal Component),

Shear on Bracket Vertical Leg:

Gross Area:	$A_{g v}=(6.0 \mathrm{in})^{\star}(0.25 \mathrm{in})=1.50 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60{ }^{*} F_{y}{ }^{*} A_{g v}=32.40 \mathrm{kip}$			(Eqn J4-3)
	$\Phi_{N}=0.75$	LRFD		(Eqn J4-4)
Net Area:	$A_{n v}=(6.0 i n)^{*}(0.25 i n)-\left(4^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=1.19 \mathrm{in} 2$			(Sec B4.3)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{N}{ }^{*} 0.60{ }^{*} F_{u}{ }^{*} A_{n v}=41.33 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-vielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=32.40 \mathrm{kip}$ LRFD			(Horizontal Component)

${ }^{* \star}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg:

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{6 * 0.25^{2}}{4}=$	0.0938 in 3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	3.038 kip-in	
Moment Arm:	Moment ${ }_{\text {arm }}=1.375 \mathrm{in}$		(Eqn F11-1)
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	2.209 kip LRFD	(Vertical Component)

Bending Moment on Lower Leg (Side B):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{6 * 0.25^{2}}{4}=$	0.0938 in 3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	3.038 kip-in	(Eqn F11
Moment Arm:	Moment ${ }_{\text {arm }}=1.375 \mathrm{in}$		
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	2.209 kip LRFD	(Horizontal Component)

R. F. NELSON		Date:	5/7/2019
\& ASSOCIATES	1/4" BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$3(3)$

Piece \#33146A -L3" x 3" x 1/4" x 0'-6" Steel Angle Bracket (A36 min)

w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet.

Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$) Capacity of (1) Screw from $1 / 4^{\prime \prime}, 3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet) Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $N=4$ $\boldsymbol{V}_{\text {allow }}{ }^{* N}$	$\boldsymbol{T}_{\text {allow }}{ }^{*} \boldsymbol{N}$
$0.048-0.048$	603 lbf	0.048	210 lbf	$\mathbf{2 4 1 2 \mathrm { lbf }}$	$\mathbf{8 4 0 \mathrm { lbf }}$
$0.048-0.075$	1001 lbf	0.06	331 lbf	4004 lbf	1324 lbf
$0.060-0.060$	833 lbf	0.075	409 lbf	3332 lbf	1636 lbf
$0.075-0.078$	1058 lbf	0.105	548 lbf	4232 lbf	2192 lbf
$1 / 8^{\prime \prime}-3 / 16^{\prime \prime}$	1021 lbf	$1 / 8^{\prime \prime}$	897 lbf	4084 lbf	3588 lbf
		$3 / 16^{\prime \prime}$	1439 lbf		5756 lbf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:

$$
\begin{aligned}
F_{t} & =45 \mathrm{ksi} \\
t h_{\text {bracket }} & =0.25 \mathrm{in} \\
F_{v} & =27 \mathrm{ksi}
\end{aligned}
$$

Bracket Thickness:
(Table J3.2 AISC 14th)
Nominal Shear Strength, Threads Excluded:
Bolt Diameter:
$d_{b c d}=0.50 \mathrm{in}$

Bolt Area:
$A_{b c d}=0.25^{*} \pi^{*} d_{b c d}{ }^{2}=0.20 \mathrm{in} 2$
$\phi=0.75 \quad L R F D$
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:
$V_{\text {allow-bolt }}=\phi^{*} F_{V}{ }^{*} A_{b c d}=3.98 \mathrm{kip}$

Tension Capacity of single bearing type bolt:
$T_{\text {allow-bolt }}=\quad \phi^{*} F_{t}^{*} A_{b c d}=6.63 \mathrm{kip}$

Bolt bearing strength at bracket connection: (Section J3.10)

$$
F_{u}=58 \mathrm{ksi}
$$

Bolt edge distance:

$$
\text { edge-dist }=1.00 \mathrm{in}
$$

$b h=0.625 \mathrm{in}$

Clear distance between edge of hole $\quad L_{c}=$ edge-dist -0.5^{*} bh $=0.69 \mathrm{in2}$ and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\begin{aligned}
& \text { Bolt br'g }=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th } h_{\text {plate }} *_{u}\right),\left(3.0^{*} d_{\text {bcd }}{ }^{*} h_{\text {plate }}{ }^{*} F_{u}\right)\right]=14.95 \mathrm{kip} \\
& 2 * \text { Bolt }_{\text {allow-bolt }}=2 * \phi{ }^{*} \text { Bolt } \text { bearing } \quad 22.43 \text { kip LRFD }
\end{aligned}
$$

R. F. NELSON	Date:	$5 / 7 / 2019$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:
Structural Engineers	Sheet:	$38-001$

Piece \#33146A - L3" x 3" x 1/4" x 0'-6" Steel Angle Bracket (A36 min)

 w/(4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4^{\prime \prime}$See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads for Concrete Slab (LRFD)

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=570 \mathrm{lbf} \\
& \phi V_{n}=1100 \mathrm{lbf}
\end{aligned}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1275 \mathrm{lbf} \\
& \phi V_{n}=2552 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#33146A-3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4$ "

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=570 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=1100 \mathrm{lbf}$	Shear	Horizontal Allowable Load - (LRFD)
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1275 \mathrm{Ibf}$	Tension	
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=$	2552 Ibf	Shear

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$4(1)$

Design Scope:

Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#33148A-L3" x 3" $\times 1 / 4$ " x 0'-8" Steel Angle Bracket (A36 min) w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.440 \text { in }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=2.86 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

$$
d^{\prime}=0.500 \mathrm{in}
$$

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.82 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.69 \text { in } \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.70 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \mathrm{in} \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=\quad 0.23 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

1/4" BRACKETS	Date:	$1 / 23 / 2020$
	Job No.:	$18-001$
	Sheet:	$4(2)$

Piece \#33148A-L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/(5) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4$ "

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.2500 \mathrm{in}$		
Yield Strength:	$F_{y}=36 \mathrm{ksi}$		(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$		
Gross Area:	$A_{g}=(8.0 \mathrm{in})^{\star}(0.25 \mathrm{in})=2.00 \mathrm{in} 2$		
	$\phi_{t-y}=0.9$	LRFD	(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A^{\prime}$	64.80 kip	(Eqn D2-1)
Shear Lag Factor:	$U=1.0$		(Table D3.1)
Net Area:	$A_{n}=(8.0 \mathrm{in})^{\star}(0.25 \mathrm{in})-\left(5^{*} 0.3125 \mathrm{in}\right)^{\star}(0.25 \mathrm{in})=1.61 \mathrm{in} 2$		(Sec B4.3)
Effective Net Area:	$A_{e}=\quad A_{n}{ }^{*} U=$	1.61 in2	(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD	(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A$	70.01 kip	(Eqn D2-2)

$T_{\text {allow-bracket }}=\min \left(T_{\text {allow-yielding, }}, \mathrm{T}_{\text {allow-rupture }}\right)=64.80 \mathrm{kip}$ LRFD \quad| |
| ---: |
| Horizontal |

Shear on Bracket Vertical Leg:

Gross Area:	$A_{\text {gv }}=(8.0 \mathrm{in})^{*}(0.25 \mathrm{in})=2.00 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60{ }^{*} F_{y}{ }^{*} A_{\text {gv }}=43.20 \mathrm{kip}$			(Eqn J4-3)
	$\Phi_{N}=0.75 \quad L R F D$			(Eqn J4-4)
Net Area:	$A_{n v}=(8.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(5^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=1.61 \mathrm{in} 2$			(Sec B4.3)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{r}{ }^{*} 0.60{ }^{*} F_{u}{ }^{*} A_{n v}=56.01 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding, }}, \mathrm{V}_{\text {allow-rupture }}\right)=43.20 \mathrm{kip}$ LRFD			(Horizontal Component

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg (Side A):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{8 * 0.25^{2}}{4}=$	0.1250 in3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	4.050 kip-in	
Moment Arm:	Moment ${ }_{\text {arm }}=1.375 \mathrm{in}$		(Eqn F11-1)
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	2.945 kip LRFD	(Vertical Component)

Bending Moment on Lower Leg (Side B):

Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{8 * 0.25^{2}}{4}=0.1250 \mathrm{in3}$

$$
\begin{array}{cc}
\phi_{b}=0.9 & L R F D \\
M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=4.050 \mathrm{kip-in} & \text { (Sec F1) } \\
\text { (Eqn F11-1) }
\end{array}
$$

Moment Arm: \quad Moment ${ }_{\text {arm }}=1.375$ in

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=2.945 \text { kip LRFD } \quad \text { (Horizontal Component) }
$$

Piece \#33148A-L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:

Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$) Capacity of (1) Screw from 1/4", $3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet).
Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck
Bolt type: \quad A307 Gr. A (Common Bolts), bearing type connection
Nominal Tensile Strength

$$
F_{t}=45 \mathrm{ksi}
$$

Bracket Thickness:
$t h_{\text {bracket }}=0.25 \mathrm{in}$
Nominal Shear Strength, Threads Excluded:

$$
F_{v}=27 \mathrm{ksi}
$$

(Table J3.2 AISC 14th)
Bolt Diameter:
$d_{b c d}=0.50 \mathrm{in}$
Bolt Area:
$A_{b c d}=0.25^{*} \pi^{*} d_{b c d}{ }^{2}=0.20 \mathrm{in2}$
Resistance factor for bolt tension or shear:
$\phi=0.75$
LRFD

Shear Capacity of single bearing type bolt:
$V_{\text {allow-bolt }}=\quad \phi^{*} F_{V}{ }^{*} A_{b c d}=7.07 \mathrm{kip}$

Tension Capacity of single bearing type bolt:
$T_{\text {allow-bolt }}=\phi^{*} F_{t}{ }^{*} A_{b c d}=11.78 \mathrm{kip}$

Bolt bearing strength at bracket connection: (Section J3.10)

$$
F_{u}=58 \mathrm{ksi}
$$

Bolt edge distance:

$$
\begin{aligned}
\text { edge-dist } & =1.00 \mathrm{in} \\
b h & =0.625 \mathrm{in} \\
L_{c}=\text { edge-dist }-0.5^{*} b h & =0.69 \mathrm{in} 2
\end{aligned}
$$

Clear distance between edge of hole
and edge of adjacent hole or edge of plate:

Single bolt bearing capacity:

$$
\text { Bolt br'g }=\min \left[\left(1.5 * L_{c}{ }^{*} \text { th plate }^{*} F_{u}\right),\left(3.0^{*} d_{\text {bcd }}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=14.95 \mathrm{kip}
$$

$$
3 * \text { Bolt }_{\text {allow-bolt }}=3 * \phi * \text { Bolt }_{\text {bearing }} 33.64 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$4(4)$

Piece \#33148A - L3" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-8$ " Steel Angle Bracket (A36 min)

 w/(5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (3) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads for Concrete Slab (LRFD)

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=650 \mathrm{lbf} \\
& \phi V_{n}=1220 \mathrm{lbf}
\end{aligned}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1400 \mathrm{lbf} \\
& \phi V_{n}=3130 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#33148A-3" x 3" $\times 1 / 4^{\prime \prime} \times 0^{\prime}-8^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (5) $0.3125^{\prime \prime}$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816 \& (3) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=650 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=1220 \mathrm{lbf}$	Shear	 Horizontal Allowable Load (LRFD)
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1400 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=3130 \mathrm{lbf}$	Shear	

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$5(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#43143A - L4" x 3" x 1/4" x 0'-3" Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3$ 3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.440 \text { in }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=2.86 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

$$
d^{\prime}=0.500 \mathrm{in}
$$

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.82 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.69 \text { in } \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.70 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \mathrm{in} \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta * \alpha^{\prime}\right)}}=\quad 0.23 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON		Date:
\& ASSOCIATES	1/23/2020	
Structural Engineers	BRACKETS	Job No.:
	Sheet:	$5(2)$

Piece \#43143A-L4" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3$ 3-3/4"

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.2500 \mathrm{in}$			(Table 2-4)
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(3.0 \mathrm{in})^{\star}(0.25 \mathrm{in})=0.75 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A$	24.30 kip		(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(3.0 \mathrm{in})^{\star}(0.25 \mathrm{in})-($	0.3125in)*(0.25in)	0.59 in 2	(Sec B4.3)
Effective Net Area:	$A_{\text {e }}=\quad A_{n}{ }^{*} U=$	0.59 in 2		(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=25.83 \mathrm{kip}$			(Eqn D2-2)
	$T_{\text {allow-rracket }}=\min \left(\mathrm{T}_{\text {allow }}\right.$	Jing, $\left.T_{\text {allow-rupture }}\right)=$	24.30 kip LRFD	(Vertical \& Horizontal Component))
Bracket Vertical L				
Gross Area:	$A_{g v}=(3.0 \mathrm{in})^{\star}(0.25 \mathrm{in})=0.75 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60{ }^{*} F_{y}{ }^{*} A_{\text {gv }}=16.20 \mathrm{kip}$			(Eqn J4-3)
	$\Phi_{N}=0.75$	LRFD		(Eqn J4-4)
Net Area:	$A_{n v}=(3.0 i n)^{*}(0.25 i n)-\left(2^{*} 0.3125 i n\right)^{*}(0.25 i n)=0.59 \mathrm{in} 2$			(Sec B4.3)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{N}{ }^{*} 0.60^{*} F_{u}{ }^{*} A_{n v}=20.66 \mathrm{kip}$			(Eqn J4-4)
	$V_{\text {allow }}=\min \left(V_{\text {allow-yielding }}, V_{\text {allow-rupture }}\right)=16.20 \mathrm{kip} \text { LRFD }$			(Horizontal Component)

${ }^{* \star}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg:

Bending Moment on Lower Leg (Side B):

Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{3^{*} 0.25^{2}}{4}=0.0469 \mathrm{in} 3$

$$
\begin{array}{cc}
\phi_{b}=0.9 & L R F D \\
M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=1.519 \mathrm{kip-in} & \text { (Sec F1) } \\
\text { (Eqn F11-1) }
\end{array}
$$

Moment Arm: \quad Moment $_{\text {arm }}=1.375$ in

Allowable Load:

$$
P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.105 \text { kip LRFD (Horizontal Component) }
$$

R. F. NELSON		Date:	$5 / 7 / 2019$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$5(3)$

Piece \#43143A - L4" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:
Bracket Thickness
$t h_{\text {bracket }}=0.25 \mathrm{in}$
Nominal Shear Strength, Threads Excluded:

Bolt Diameter:

Bolt Area:
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:

Clear distance between edge of hole and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=21.75 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 16.31 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$5(4)$

Piece \#43143A - L4" x 3" x 1/4" x 0'-3" Steel Angle Bracket (A36 min)

 w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD) See Hilti Profis output for Allowable Combined Tension and Shear Loads for Concrete Slab (LRFD)

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=390 \mathrm{lbf} \\
& \phi V_{n}=440 \mathrm{lbf}
\end{aligned}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=950 \mathrm{lbf} \\
& \phi V_{n}=1322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#43143A-4" x 3" x 1/4" x 0'-3" Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4$ "

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=390 \mathrm{lbf}$	Tension	 Horizontal
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=440 \mathrm{lbf}$	Shear	Allowable Load - (LRFD)
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=950 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1322 \mathrm{lbf}$	Shear	

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$6(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#43146A - L4" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(4) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ $3 / 8^{\prime \prime} \times 3-3 / 4^{\prime \prime}$

AISC 14 Edition Part 9, p.9-10 of Specification

$$
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} * p^{*} F_{u}}}=0.440 \text { in }
$$

$$
\begin{equation*}
T_{\text {avail }}=B Q=2.86 \mathrm{kip} \tag{Eq.9-31}
\end{equation*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

$$
d^{\prime}=0.500 \mathrm{in}
$$

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.82 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.69 \text { in } \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.70 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \mathrm{in} \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta * \alpha^{\prime}\right)}}=\quad 0.23 \text { in LRFD } \quad \text { (Eq. 9-23a) }
$$

R. F. NELSON		Date:	$1 / 23 / 2020$
\& ASSOCIATES	1/4" BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$6(2)$

Piece \#43146A - L4" x 3" $\times 1 / 4^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min)

w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.2500 \mathrm{in}$			
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(6.0 \mathrm{in})^{*}(0.25 \mathrm{in})=1.50 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=48.60 \mathrm{kip}$			(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(6.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(4^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=1.19 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	* $U=1.19 \mathrm{in} 2$			(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=51.66 \mathrm{kip}$			(Eqn D2-2)
	$T_{\text {allow-bracket }}=\min \left(\mathrm{T}_{\text {allo }}\right.$	elding, $\left.T_{\text {allow-rupture }}\right)=$	48.60 kip LRFD	(Vertical \& Horizontal Component))

Shear on Bracket Vertical Leg.

${ }^{* *}$ Note: Bending of Bracket is Considered within the Prying Calculation
Bending Moment on Vertical Leg:
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{6^{*} 0.25^{2}}{4}=0.0938 \mathrm{in} 3$

$$
\phi_{b}=0.9 \quad L R F D
$$

(Sec F1)

$$
M_{\text {allow }}=\phi^{*} F_{y} * Z=3.038 \mathrm{kip}-\mathrm{in}
$$

Moment Arm:

$$
\text { Moment }_{\text {arm }}=2.875 \mathrm{in}
$$

(Eqn F11-1)

Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.057 \mathrm{kip}$ LRFD \quad (Vertical Component)

Bending Moment on Lower Leg (Side B):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{6^{*} 0.25^{2}}{4}=$	0.0938 in3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	3.038 kip-in	(Eqn F11-1)
Moment Arm:	Moment ${ }_{\text {arm }}=1.375 \mathrm{in}$		
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	2.209 kip LRFD	(Horizontal Component)

Date: 5/7/2019
1/4" BRACKETS
Job No.: 18-001
Structural Engineers
Sheet:
6 (3)

Piece \#43146A - L4" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-6$ " Steel Angle Bracket (A36 min)
w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Scr $V_{\text {allow }}{ }^{*} N$	$t_{\text {allow }} * N$
0.048-0.048	603 lbf	0.048	210 lbf	2412 Ibf	840 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	4004 lbf	1324 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	3332 Ibf	1636 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	4232 lbf	2192 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	4084 Ibf	3588 lbf
		3/16"	1439 Ibf		5756 lbf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:
Bracket Thickness.
$t h_{\text {bracket }}=0.25$ in
$F_{v}=27 \mathrm{ksi}$
(Table J3.2 AISC 14th)
Bolt Diameter:

Bolt Area:

Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:
Clear distance between edge of hole
and edge of adjacent hole or edge of plate:
Single bolt bearing capacity:
Bolt $_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*}\right.\right.$ th plate $\left.^{*} F_{u}\right),\left(3.0^{*} d_{\text {bcd }}{ }^{*}\right.$ th plate $\left.\left.{ }^{*} F_{u}\right)\right]=14.95 \mathrm{kip}$
$2{ }^{*}$ Bolt $_{\text {allow-bolt }}=2 *$ B * Bolt $_{\text {bearing }} \quad 22.43$ kip $L R F D$

R. F. NELSON	Date:	$5 / 7 / 2019$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:
Structural Engineers	Sheet:	$6(4)$

Piece \#43146A - L4" x 3" x 1/4" x 0'-6" Steel Angle Bracket (A36 min)

w/(4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" x 3-3/4"
See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD)
See Hilti Profis output for Allowable Combined Tension and Shear Loads for Concrete Slab (LRFD)
3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=570 \mathrm{lbf} \\
& \phi V_{n}=1100 \mathrm{lbf}
\end{aligned}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=1275 \mathrm{lbf} \\
& \phi V_{n}=2552 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACI 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#43146A-4" x 3" x 1/4" x 0'-6" Steel Angle Bracket (A36 min) w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (2) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8" $\times 3-3 / 4$ "

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=570 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=1100 \mathrm{lbf}$	Shear	 Horizontal Allowable Load - (LRFD)
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=1275 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=2552 \mathrm{lbf}$	Shear	

Date:	$5 / 7 / 2019$
Job No.:	$18-001$
Sheet:	$7(1)$

Design Scope:
Calculations to determine the Load and Resistance Factor Design of the seismic restraint as detailed by 9.0 SeismicCo., 1/4" Floor \& Wall Brackets (included within this calculation package for reference).

Prying of Piece \#63143A - L6" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (4) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8"x3-3/4"

AISC 14 Edition Part 9, p.9-10 of Specification

$$
\begin{gather*}
t_{c}=\sqrt{\frac{4 * B^{*} b^{\prime}}{\Phi_{L R F D} p^{*} F_{u}}}=0.440 \mathrm{in} \\
T_{\text {avail }}=B Q=2.86 \mathrm{kip}
\end{gather*}
$$

$$
\begin{gathered}
Q=0.587 \\
0 \leq a^{\prime} \leq 1, Q=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta^{*} \alpha^{\prime}\right)=0.587
\end{gathered}
$$

(Eq. 9-33)
Width of hole along length of plate:
Distance from bolt centerline to edge of plate:

Additional variables for prying calculation:

$$
\begin{aligned}
& \delta=1-\frac{d^{\prime}}{p}=0.82 \quad a^{\prime}=a+\frac{d_{b}}{2}=1.69 \text { in } \quad \leq\left(1.25 * b^{*} \frac{d_{b}}{2}\right)=1.91 \text { in } \\
& \text { Eq. (9-24) } \\
& \rho=\frac{b^{\prime}}{a^{\prime}}=0.70 \\
& \text { Eq. (9-26) } \\
& \beta=\frac{1}{\rho} *\left(\frac{B}{T}-1\right)=1.00 \text { in } \\
& \text { Eq. (9-25) } \\
& \alpha^{\prime}=\text { if }\left[\beta=>1,1, \min \left[1, \frac{1}{\delta} *\left(\frac{\beta}{1-\beta}\right)\right]\right]= \\
& 1.00
\end{aligned}
$$

Required bracket thickness to ensure an acceptable combination of fitting strength, stiffness, and bolt strength:

$$
t_{\min }=\sqrt{\frac{4 * T^{*} b^{\prime}}{\Phi_{p r} * p^{*} F_{u} *\left(1+\delta^{*} \alpha^{\prime}\right)}}=
$$

0.23 in $\angle R F D \quad$ (Eq. 9-23a)

R. F. NELSON		Date:
\& ASSOCIATES	$\mathbf{1 / 2 "}$ " BRACKETS	Job No.:
Structural Engineers		Sheet:
		$7(2)$

Piece \#63143A-L6" x 3" $\times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min)

w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8"x3-3/4"

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bending Moment on Vertical Leg (Side A):
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{3 * 0.25^{2}}{4}=0.0469 \mathrm{in} 3$

$$
\phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) }
$$

$$
M_{\text {allow }}=\phi^{*} F_{y} * Z=1.519 \mathrm{kip}-\mathrm{in}
$$

Moment Arm:

$$
\text { Moment }_{\text {arm }}=4.375 \mathrm{in}
$$

(Eqn F11-1)

$$
\text { Allowable Load: } \quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=0.347 \mathrm{kip} \text { LRFD } \quad \text { (Vertical Component) }
$$

Bending Moment on Lower Leg (Side B):

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{3 * 0.25^{2}}{4}=$	0.0469 in 3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	1.519 kip -in	(Eqn F11-1)
Moment Arm:	Moment ${ }_{\text {arm }}=1.375 \mathrm{in}$		
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	1.105 kip LRFD	(Horizontal Component)

R. F. NELSON		Date:	$5 / 7 / 2019$
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$7(3)$

Piece \#63143A-L6" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min)
w/ (4) 0.3125 " dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8"x3-3/4"

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity
(ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi} \&$ min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet).

Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	$T_{\text {allow }} * N$
0.048-0.048	603 lbf	0.048	210 lbf	2412 lbf	840 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	4004 Ibf	1324 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	3332 Ibf	1636 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	4232 Ibf	2192 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	4084 Ibf	3588 Ibf
		3/16"	1439 lbf		5756 Ibf

Bolts thru Angle Bracket to Concrete Slab or Concrete-Filled Profile Steel Deck Failure Modes:

Hilti Kwik Bolt-TZ anchors may be installed in cracked or uncracked concrete or concrete-filled steel deck

Bolt type: A307 Gr. A (Common Bolts), bearing type connection

Nominal Tensile Strength:

Bracket Thickness
$t h_{\text {bracket }}=0.25 \mathrm{in}$
Nominal Shear Strength, Threads Excluded:

Bolt Diameter:

Bolt Area:
Resistance factor for bolt tension or shear:

Shear Capacity of single bearing type bolt:

Tension Capacity of single bearing type bolt:

Bolt bearing strength at bracket connection: (Section J3.10)

Bolt edge distance:
Bolt hole diameter:

Clear distance between edge of hole and edge of adjacent hole or edge of plate:

Single end bolt bearing capacity:

$$
\text { Bolt }_{\text {br'g }}=\min \left[\left(1.5^{*} L_{c}{ }^{*} \text { th plate }{ }^{*} F_{u}\right),\left(3.0^{\star} d_{b c d}{ }^{*} \text { th plate }{ }^{*} F_{u}\right)\right]=21.75 \mathrm{kip}
$$

$$
\text { Bolt }_{\text {allow-bolt }}=\phi^{*} \text { Bolt }_{\text {bearing }} \quad 16.31 \text { kip LRFD }
$$

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$7(4)$

Piece \#63143A-L6" x 3" x 1/4" x 0'-3" Steel Angle Bracket (A36 min)

w/(4) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816 \& (1) 0.4375" dia Hole for Hilti KB-TZ 3/8"x3-3/4"
See Hilti Excel output for Allowable Combined Tension and Shear Loads for Concrete Over Metal Deck (LRFD)
See Hilti Profis output for Allowable Combined Tension and Shear Loads for Concrete Slab (LRFD)
3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on Concrete over Metal Deck

$$
\begin{aligned}
& \phi N_{n}=390 \mathrm{lbf} \\
& \phi V_{n}=440 \mathrm{lbf}
\end{aligned}
$$

3/8" dia Hilti Kwik Bolt-TZ Expansion Anchors (ESR-1917) w/ 2" Embedment on 4' min Concrete Slab

$$
\begin{aligned}
& \phi N_{n}=950 \mathrm{lbf} \\
& \phi V_{n}=1322 \mathrm{lbf}
\end{aligned}
$$

Given that the Load and Resistance Factor Design calculated above for the angle brackets and bolts far outweigh the capacity of the concrete anchors, the allowable loading to the concrete anchors govern.
Note also that the capacity of the concrete anchors shown here is based on utilizing Section D.3.3.4.3 (d) of ACI 318-11, which requires the inclusion of the Omega factor when determining the loads applied to the anchorage. Do to the complication of the requirement (per ACl 318-11) to determine the concrete anchorage capacity utilizing LRFD as well as Section 4.2 in ESR-1917 the allowable load for this Piece is given in LRFD only.

Overall Capacity of Seismic Load - Piece \#63143A-L6" $\times 3^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4 "$ Hilti Kwik Flex \#EAF-816 \& (1) $0.4375^{\prime \prime}$ dia Hole for Hilti KB-TZ 3/8"x3-3/4"

Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=390 \mathrm{lbf}$	Tension	
Load $_{\text {allowable-total-on-concrete-ove-metal-deck }}=440 \mathrm{lbf}$	Shear	 Horizontal
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=950 \mathrm{lbf}$	Tension	Allowable Load - (LRFD)
Load $_{\text {allowable-total-on-4" min-concrete-slab }}=$	1322 lbf	Shear

R. F. NELSON	Date:	$1 / 23 / 2020$	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers		Sheet:	$8(1)$

Piece \#36143A - L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$

dia Holes for $1 / 4^{" H}$ Hilti Kwik Flex \#EAF-846 \& (2) $0.3125^{\prime \prime}$ dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Tension on Bracket Vertical Leg:

AISC 14th - Chapter D of Specification.

Bracket Thickness: $\quad t h_{\text {bracket }}=0.2500$ in				
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(3.0 i n) *(0.25 i n)=0.75 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=24.30 \mathrm{kip}$			(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(2^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=0.59 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	$A_{e}=\quad A_{n} * U=\quad 0.59 \mathrm{in} 2$			(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=25.83 \mathrm{kip}$			(Eqn D2-2)
	$T_{\text {allow-bracket }}=\min \left(\mathrm{T}_{\text {allow }}\right.$	ing, $\left.T_{\text {allow-rupture }}\right)=$	24.30 kip LRFD	(Vertical \& Horizontal Component)

Shear on Bracket Vertical Leg:

Gross Area:	$A_{\text {gv }}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})=0.75 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:		$\phi_{y v}{ }^{*} 0.60{ }^{*} F_{y}{ }^{*} A_{g v}$	16.20 kip	(Eqn J4-3)
Net Area:	$A_{n v}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})-(2 * 0.3125 \mathrm{in})^{*}(0.25 \mathrm{in})=0.59 \mathrm{in} 2$			(Sec B4.3)
	$\Phi_{r v}=0.75$	LRFD		(Eqn J4-4)
Shear Rupture:	$V_{\text {allow-upture }}=\phi_{n v}{ }^{*} 0.60 * F_{u}{ }^{*} A_{n v}=20.66 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=16.20 \mathrm{kip}$ LRFD			(Horizo Compon

Bending Moment on Lower Leg (Side B):

Plastic Modulus: \quad| $Z=\frac{b d^{2}}{4}=\frac{3^{*} 0.25^{2}}{4}=0.0469 \mathrm{in} 3$ |
| :---: |
| $\phi_{b}=0.9$ |
| $M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=1.519 \mathrm{kip}-\mathrm{in}$ |${ }^{\text {LRFD }} \quad$ (Sec F1)

Moment Arm: \quad Moment $_{\text {arm }}=4.875$ in
Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=0.312 \mathrm{kip}$ LRFD \quad (Horizontal Component)
Bending Moment on Vertical Leg (Side A):

Plastic Modulus:

$$
\begin{aligned}
& Z=\frac{b d^{2}}{4}=\frac{3 * 0.25^{2}}{4}=0.0469 \mathrm{in} 3 \\
& \phi_{b}=0.9 \quad L R F D \\
& M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=1.519 \mathrm{kip}-\mathrm{in} \\
& \text { Moment }_{\text {arm }}=1.375 \text { in } \\
& \text { (Eqn F11-1) } \\
& \text { Allowable Load: } \quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }}=1.105 \text { kip LRFD } \quad \text { (Vertical Component) }
\end{aligned}
$$

Moment Arm:

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers		Sheet:	$8(2)$

Piece \#36143A -L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-846 \& (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi}$ \& min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from $1 / 4^{\prime \prime}, 3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Vertical Leg:

Design Thickness (in) $0.048-0.048$	$V_{\text {allow }}$
$0.048-0.075$	603 lbf
$0.060-0.060$	833 lbf
$0.075-0.078$	1058 lbf
$1 / 8^{\prime \prime}-3 / 16^{\prime \prime}$	1021 lbf

Design Thickness (in)	$T_{\text {allow }}$
0.048	210 lbf
0.06	331 lbf
0.075	409 lbf
0.105	548 lbf
$1 / 8^{\prime \prime}$	897 lbf
$3 / 16^{\prime \prime}$	1439 lbf

Horizontal Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	$\boldsymbol{T}_{\text {allow }} * N$
0.048-0.048	603 lbf	0.048	210 lbf	1206 Ibf	420 lbf
0.048-0.075	1001 lbf	0.06	331 lbf	2002 Ibf	662 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	1666 Ibf	818 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	2116 Ibf	1096 lbf
1/8" - $3 / 16^{\prime \prime}$	1021 lbf	1/8"	897 lbf	2042 Ibf	1794 lbf
		3/16"	1439 Ibf		2878 lbf

R. F. NELSON	Date:	$1 / 23 / 2020$	
\& ASSOCIATES	$\mathbf{1 / 4 "}$ BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$9(1)$

Piece \#36143B-L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$

dia Holes for $1 / 4^{" H}$ Hilti Kwik Flex \#EAF-846 \& (4) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Tension on Bracket Vertical Leg

AISC 14th - Chapter D of Specification.

Shear on Bracket Vertical Leg:

Bending Moment on Lower Leg (Side B):

Bending Moment on Vertical Leg (Side A):

Plastic Modulus:

$$
\begin{aligned}
& \text { Plastic Modulus: } \begin{array}{l}
Z=\frac{b d^{2}}{4}=\frac{3 * 0.25^{2}}{4}=0.0469 \mathrm{in3} \\
\phi_{b}=0.9 \quad \text { LRFD } \\
M_{\text {allow }}=\phi^{*} F_{y} * Z=1.519 \text { kip-in } \\
\text { Moment Arm: } \quad \text { Moment }_{\text {arm }}=1.375 \text { in } \\
\text { Allowable Load: } \quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.105 \text { kip LRFD } \quad \text { (Vertical Component) }
\end{array} \text { (Eqn F11-1) }
\end{aligned}
$$

Moment Arm:

R. F. NELSON	Date:	$5 / 7 / 2019$	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers	Sheet:	$9(2)$	

Piece \#36143B- L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-846 \& (4) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi}$ \& min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from $1 / 4^{\prime \prime}, 3 / 8^{\prime \prime} \& 1 / 2^{\prime \prime}$ Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Vertical Leg:

Design Thickness (in) $0.048-0.048$	$V_{\text {allow }}$
$0.048-0.075$	1001 lbf
$0.060-0.060$	833 lbf
$0.075-0.078$	1058 lbf
$1 / 8^{\prime \prime}-3 / 16^{\prime \prime}$	1021 lbf

Design Thickness (in)	$T_{\text {allow }}$
0.048	210 lbf
0.06	331 lbf
0.075	409 lbf
0.105	548 lbf
$1 / 8^{\prime \prime}$	897 lbf
$3 / 16^{\prime \prime}$	1439 lbf

Horizontal Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Sc $V_{\text {allow }} * N$	$T_{\text {allow }}{ }^{*} N$
0.048-0.048	603 lbf	0.048	210 lbf	2412 lbf	840 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	4004 Ibf	1324 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	3332 lbf	1636 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	4232 Ibf	2192 Ibf
1/8" - $3 / 16^{\prime \prime}$	1021 lbf	1/8"	897 lbf	4084 Ibf	3588 Ibf
		3/16"	1439 Ibf		5756 lbf

R. F. NELSON	Date:	$1 / 23 / 2020$	
\& ASSOCIATES	1/4" BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$10(1)$

Piece \#36143C - L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (4) $0.3125^{\prime \prime}$

dia Holes for 1/4" Hilti Kwik Flex \#EAF-846 \& (4) $0.3125^{\prime \prime}$ dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Tension on Bracket Vertical Leg:
AISC 14th - Chapter D of Specification:

Bracket Thickness:	$t h_{\text {bracket }}=0.2500 \mathrm{in}$			
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	$A_{g}=(3.0 \mathrm{in})^{\star}(0.25 \mathrm{in})=0.75 \mathrm{in} 2$			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A_{g}=24.30 \mathrm{kip}$			(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(2^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=0.59 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	* $U=0.59 \mathrm{in} 2$			(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r} *^{*} F_{u}{ }^{*} A_{e}=25.83 \mathrm{kip}$			(Eqn D2-2)
	$T_{\text {allow-bracket }}=\min \left(\mathrm{T}_{\text {allow }}\right.$	ding,,$\left.T_{\text {allow-rupture }}\right)=$	24.30 kip LRFD	(Vertical \& Horizontal Component))

Gross Area:	$A_{\text {gv }}=(3.0 \mathrm{in})^{*}(0.25 \mathrm{in})=0.75 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:	$V_{\text {allow }}$	$\phi_{y v}{ }^{*} 0.60 * F_{y}{ }^{*} A_{g v}=$	16.20 kip	(Eqn J4-3)
Net Area:	$A_{n v}=(3.0 i n) *(0.25 i n)-\left(2^{*} 0.3125 i n\right)^{*}(0.25 i n)=0.59 \mathrm{in} 2$			(Sec B4.3)
	$\Phi_{N}=0.75$	LRFD		(Eqn J4-4)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{N}{ }^{*} 0.60 * F_{u}{ }^{*} A_{n v}=20.66 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-rielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=16.20 \mathrm{kip}$			(Horizontal Component)
Bending Moment on Lower Leg (Side B):				

Plastic Modulus:	$Z=\frac{b d^{2}}{4}=\frac{3^{*} 0.25^{2}}{4}=$	0.0469 in3	
	$\phi_{b}=0.9$	LRFD	(Sec F1)
	$M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=$	1.519 kip -in	
Moment Arm:	Moment ${ }_{\text {arm }}=4.375 \mathrm{in}$		(Eqn F11-1)
Allowable Load:	$P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=$	0.347 kip LRFD	(Horizontal Component)

Bending Moment on Vertical Leg (Side A):

R. F. NELSON	Date:	5/7/2019	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers		Sheet:	$10(2)$

Piece \#36143C- L3" x 6" $\times 1 / 4^{\prime \prime} \times 0^{\prime}-3^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (4) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-846 \& (4) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy = 33 ksi \& min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Vertical Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Sc $V_{\text {allow }}{ }^{*} N$	$T_{\text {allow }}{ }^{*} N$
0.048-0.048	603 lbf	0.048	210 lbf	2412 lbf	840 lbf
0.048-0.075	1001 lbf	0.06	331 lbf	4004 Ibf	1324 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	3332 Ibf	1636 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	4232 Ibf	2192 Ibf
1/8" - $3 / 16^{\prime \prime}$	1021 lbf	1/8"	897 lbf	4084 lbf	3588 Ibf
		3/16"	1439 lbf		5756 Ibf

Horizontal Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Sc $V_{\text {allow }} * N$	$T_{\text {allow }}{ }^{*} N$
0.048-0.048	603 lbf	0.048	210 lbf	2412 lbf	840 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	4004 Ibf	1324 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	3332 lbf	1636 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	4232 Ibf	2192 Ibf
1/8" - $3 / 16^{\prime \prime}$	1021 lbf	1/8"	897 lbf	4084 Ibf	3588 Ibf
		3/16"	1439 Ibf		5756 lbf

R. F. NELSON		Date:	$1 / 23 / 2020$
\& ASSOCIATES	1/4" BRACKETS	Job No.:	$18-001$
Structural Engineers		Sheet:	$11(1)$

Piece \#36144A - L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-4^{\prime \prime}$ Steel Angle Bracket (A36 min) w/(2) $0.3125^{\prime \prime}$

dia Holes for $1 / 4^{" H}$ Hilti Kwik Flex \#EAF-846 \& (2) $0.3125^{\prime \prime}$ dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Tension on Bracket Vertical Leg

AISC 14th - Chapter D of Specification:

Shear on Bracket Vertical Leg:
Gross Area: $\quad A_{g v}=(4.0 i n)^{*}(0.25 i n)=1.00$ in2
(Eqn J4-3)

Shear Yielding: $\quad V_{\text {allow-yielding }}=\phi_{y v}{ }^{*} 0.60 * F_{y}{ }^{*} A_{g v}=21.60 \mathrm{kip} \quad$ (Eqn J4-3)

Net Area:

$$
\begin{array}{cl}
A_{n v}=(4.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(2^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=0.84 \mathrm{in2} & (\operatorname{Sec} \text { B4.3) } \\
\Phi_{r v}=0.75 & \text { LRFD }
\end{array}
$$

Shear Rupture
$V_{\text {allow-rupture }}=\phi_{n v}{ }^{*} 0.60 * F_{u}{ }^{*} A_{n v}=29.36 \mathrm{kip}$
$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=21.60 \mathrm{kip}$ LRFD $\quad \begin{aligned} & \text { (Horizontal } \\ & \text { Component) }\end{aligned}$
Bending Moment on Lower Leg (Side B):

Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=0.415$ kip LRFD \quad (Horizontal Component)
Bending Moment on Vertical Leg (Side A):

```
Plastic Modulus:
\[
Z=\frac{b d^{2}}{4}=\frac{6 * 0.25^{2}}{4}=0.0625 \mathrm{in} 3
\]
\[
\phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) }
\]
\[
M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=2.025 \text { kip-in }
\]
Moment Arm: Moment \(_{\text {am }}=1.375\) in (Eqn F11-1)
Allowable Load: \(\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=1.473\) kip LRFD \(\quad\) (Vertical Component)
```

R. F. NELSON	Date:	5/7/2019	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers		Sheet:	$11(2)$

Piece \#36144A-L3" x 6" $\times 1 / 4^{\prime \prime} \times 0^{\prime}-4$ " Steel Angle Bracket (A36 min) w/ (2) 0.3125" dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-846 \& (2) $0.3125^{\prime \prime}$ dia Holes for $1 / 4$ " Hilti Kwik Flex \#EAF-816

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy = 33 ksi \& min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Vertical Leg:

Design Thickness (in) $0.048-0.048$	$V_{\text {allow }}$
$0.048-0.075$	100 lbf
$0.060-0.060$	833 lbf
$0.075-0.078$	1058 lbf
$1 / 8^{\prime \prime}-3 / 16^{\prime \prime}$	1021 lbf

Design Thickness (in)	$T_{\text {allow }}$
0.048	210 lbf
0.06	331 lbf
0.075	409 lbf
0.105	548 lbf
$1 / 8^{\prime \prime}$	897 lbf
$3 / 16^{\prime \prime}$	1439 lbf

Horizontal Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Sc $V_{\text {allow }} * N$	$T_{\text {allow }} * N$
0.048-0.048	603 lbf	0.048	210 lbf	1206 Ibf	420 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	2002 Ibf	662 lbf
0.060-0.060	833 lbf	0.075	409 lbf	1666 Ibf	818 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	2116 Ibf	1096 Ibf
1/8"-3/16"	1021 lbf	1/8"	897 lbf	2042 Ibf	1794 Ibf
		3/16"	1439 lbf		2878 lbf

R. F. NELSON	Date:	$1 / 23 / 2020$	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers		Sheet:	$12(1)$

Piece \#36146A - L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-6^{\prime \prime}$ Steel Angle Bracket (A36 min) w/ (4) $0.3125^{\prime \prime}$

dia Holes for $1 / 4^{" H}$ Hilti Kwik Flex \#EAF-846 \& (8) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Tension on Bracket Vertical Leg:

AISC 14th - Chapter D of Specification:

Bracket Thickness: $\quad t h_{\text {bracket }}=0.2500$ in				
Yield Strength:	$F_{y}=36 \mathrm{ksi}$			(Table 2-4)
Ultimate Strength:	$F_{u}=58 \mathrm{ksi}$			
Gross Area:	6941.50 in2			
	$\phi_{t-y}=0.9$	LRFD		(Eqn D2.1)
Tensile Yielding:	$T_{\text {allow-yielding }}=\phi_{t-y}{ }^{*} F_{y}{ }^{*} A$	48.60 kip		(Eqn D2-1)
Shear Lag Factor:	$U=1.0$			(Table D3.1)
Net Area:	$A_{n}=(6.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(4^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=1.19 \mathrm{in} 2$			(Sec B4.3)
Effective Net Area:	$A_{\mathrm{e}}=\quad A_{n}{ }^{*} U=$	1.19 in2		(Eqn D3-1)
	$\phi_{t r}=0.75$	LRFD		(Eqn D2-2)
Tensile Rupture:	$T_{\text {allow-rupture }}=\phi_{t-r}{ }^{*} F_{u}{ }^{*} A_{e}=51.66 \mathrm{kip}$			(Eqn D2-2)
	$T_{\text {allow-bracket }}=\min \left(\mathrm{T}_{\text {allow }}\right.$	ting, $\left.T_{\text {allow-upture }}\right)=$	48.60 kip LRFD	(Vertical \& Horizontal Component)

Shear on Bracket Vertical Leg:

Gross Area:	$A_{\text {gv }}=(6.0 \mathrm{in})^{*}(0.25 \mathrm{in})=1.50 \mathrm{in} 2$			
	$\Phi_{y v}=1.00$	LRFD		(Eqn J4-3)
Shear Yielding:		$\phi_{y v}{ }^{*} 0.60 * F_{y}{ }^{*} A_{g v}=$	32.40 kip	(Eqn J4-3)
Net Area:	$A_{n v}=(6.0 \mathrm{in})^{*}(0.25 \mathrm{in})-\left(4^{*} 0.3125 \mathrm{in}\right)^{*}(0.25 \mathrm{in})=1.19 \mathrm{in} 2$			(Sec B4.3)
	$\Phi_{N}=0.75$	LRFD		(Eqn J4-4)
Shear Rupture:	$V_{\text {allow-rupture }}=\phi_{r v}{ }^{*} 0.60{ }^{*} F_{u}{ }^{*} A_{n v}=41.33 \mathrm{kip}$			(Eqn J4-4)
	$\mathrm{V}_{\text {allow }}=\min \left(\mathrm{V}_{\text {allow-yielding }}, \mathrm{V}_{\text {allow-rupture }}\right)=32.40 \mathrm{kip}$ LRFD			(Horizontal Component)

Bending Moment on Lower Leg (Side B):
Plastic Modulus: $\quad Z=\frac{b d^{2}}{4}=\frac{6^{*} 0.25^{2}}{4}=0.0938$ in3

$$
\phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) }
$$

$$
M_{\text {allow }}=\phi^{*} F_{y}^{* Z}=3.038 \mathrm{kip}-\mathrm{in}
$$

Moment Arm:

$$
\text { Moment }_{\text {arm }}=4.375 \mathrm{in}
$$

(Eqn F11-1)

Allowable Load: $\quad P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=0.694$ kip LRFD \quad (Horizontal Component)
Bending Moment on Vertical Leg (Side A):

Plastic Modulus:

Moment Arm:

Allowable Load:

$$
\begin{aligned}
& Z=\frac{b d^{2}}{4}=\frac{6^{*} 0.25^{2}}{4}=0.0938 \mathrm{in} 3 \\
& \phi_{b}=0.9 \quad L R F D \quad \text { (Sec F1) } \\
& M_{\text {allow }}=\phi^{*} F_{y}{ }^{*} Z=3.038 \text { kip-in } \\
& \text { Moment }_{a r m}=1.375 \mathrm{in} \\
& \text { (Eqn F11-1) } \\
& P_{\text {allow }}=\frac{M_{\text {allow }}}{\text { Moment }_{\text {arm }}}=2.209 \text { kip LRFD } \quad \text { (Vertical Component) }
\end{aligned}
$$

R. F. NELSON	Date:	5/7/2019	
\& ASSOCIATES	$\mathbf{1 / 4 " B R A C K E T S}$	Job No.:	$18-001$
Structural Engineers		Sheet:	$12(2)$

Piece \#3614A-L3" $\times 6^{\prime \prime} \times 1 / 4^{\prime \prime} \times 0^{\prime}-6$ " Steel Angle Bracket (A36 min) w/ (4) $0.3125^{\prime \prime}$ dia Holes for $1 / 4^{\prime \prime}$ Hilti Kwik Flex \#EAF-846 \& (8) 0.3125" dia Holes for 1/4" Hilti Kwik Flex \#EAF-816

Screws from Angle Bracket to Steel Sheet:
Hilti Kwik Flex \#EAF-816 \& \#EAF-846 : (Screw Type 6, LRFD Shear (Bearing) \& Tension (Pull-Out) Capacity (ICC-ESR-3332) Based on a Steel Member (min yield strength, Fy $=33 \mathrm{ksi}$ \& min tensile strength Fu $=45 \mathrm{ksi}$)
Capacity of (1) Screw from 1/4", 3/8" \& 1/2" Brackets to various design thickness steel sheets
Shear Bearing Capacity first number is the minimum thickness of the steel in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). Tensile Pull-out Capacity the number is for the steel sheet not in contact with the screw head (bottom sheet). Screw Capacities (Shear Bearing per ESR-3332, Table 3 \& Tensile Pull-out per Table 5 per ESR-3332) LRFD

Vertical Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Sc $V_{\text {allow }}{ }^{*} N$	$T_{\text {allow }}{ }^{*} N$
0.048-0.048	603 lbf	0.048	210 lbf	2412 lbf	840 lbf
0.048-0.075	1001 lbf	0.06	331 lbf	4004 Ibf	1324 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	3332 Ibf	1636 Ibf
0.075-0.078	1058 lbf	0.105	548 lbf	4232 Ibf	2192 Ibf
1/8" - $3 / 16^{\prime \prime}$	1021 lbf	1/8"	897 lbf	4084 lbf	3588 Ibf
		3/16"	1439 lbf		5756 Ibf

Horizontal Leg:

Design Thickness (in)	$V_{\text {allow }}$	Design Thickness (in)	$T_{\text {allow }}$	Number of Screws $V_{\text {allow }} * N$	$T_{\text {allow }}{ }^{*} N$
0.048-0.048	603 lbf	0.048	210 lbf	4824 Ibf	1680 Ibf
0.048-0.075	1001 lbf	0.06	331 lbf	8008 Ibf	2648 Ibf
0.060-0.060	833 lbf	0.075	409 lbf	6664 Ibf	3272 lbf
0.075-0.078	1058 lbf	0.105	548 lbf	8464 Ibf	4384 Ibf
1/8" - $3 / 16^{\prime \prime}$	1021 lbf	1/8"	897 lbf	8168 lbf	7176 lbf
		3/16"	1439 lbf		11512 lbf

